Contents:

I.	Matters needing attention of installation: .	2
II.	Instrction of function flow:	9
III.	Simple and easy troubleshooting:	40
IV.	Product Certificate:	41

- I

 Matters needing attention of installation:
 - A . Name of main components:

Main Body

Mounting Frame

Vibration Sensor

RPM Sensor

B. Main body installation and system connection:

Main Body Installation Diagram (1)

Main Body Installation Diagram (2)

Panel Mount Square Hole Size (171mmX126mm)

System Connection Diagram: Please correctly connect the signal wire to corresponding location according to assigned numbers, as well as it must be on grounding situation.

CoversPlus INT'L	CoversPlus INT'L
P.3	P.4

C . Matters needing attention of installation i.POWER ADAPTOR:

1. Please confirm used power voltage & frequency match with specification of power adaptor.

ii.RPM SENSOR:

1. The location and method of setup(example):

- To utilize the threading tools(§ 8mm) to make a thread(long 8mm) in the center hole 60~70mm length /round of motor.
- To choose a steel round bar(§ 8mm), and grind off 0.1~0.2mm depth on one top(long 12~15mm), in order to response to rpm sensor then make the thread(6~8mm length) on another top to thread in the center hole of motor,
- To make RPM sensor lock on the bottom of motor with a prop stand, and adjust correctly the red flat(§ 12mm) of RPM sensor closer to the outside curve of round bar within 4mm(the distance of rpm sensor), please refer to the installation photo as below.
- To rotate the wheel by hands until the red light spot flash interactively.

RPM Sensor Setup

CoversPlus INT'L	CoversPlus INT'L
P.5	P.6

iii.VIBRATION SENSOR:

- 1. The vibration sensor need mount more closer to wheel and tightly thread (M6 thread) on outside diameter.
- 2.Don't install the vibration sensor on wheel cover, because the resonance will affect the balancing precision.
- 3.Please do neither drop nor shock the vibration sensor location of spindle, please refer to setup photo as below.

Vibration Sensor Setup

COD THE

M6 Thread

iv.Other matters needing attention:

- 1. All signal wire including vibration/rpm sensor must be far away from system power line to avoid interference.
- 2. For the sake of speedy/precise balancing operations, it's necessary to engrave the angle scales on the flange along with the rotating direction of wheels, please refer to the photo as below.

CoversPlus INT'L	CoversPlus INT'L
P.7	P.8

Ⅲ 丶 Instruction of function flow:

A. Main function instruction:

- VIB. MON. F1:
 - Main body will send out an alarm to remind operator, it need to balance wheel immediately.
- NEW BAL. F2:
 - To balanced dynamically on line after replace wheel.
- LAST BAL. F3:
 - To balance dynamically on line after balanced statically off line.
- CONT BAL. F4:
 - To balance dynamically on line continuously while wheel's balance exceed the initial setup limit.
- TOL. SET F5:
 - To set up the vibration (in μ m) allowable of wheels, when the vibration of wheels is over setup limit, it will give notice to operator to balance wheel immediately.
- Chinese/中文 F6:
 - Switch Language System; Chinese and English could be selected.

B. Function/ Specification Table:

Function	Specification
Accuracy	0.01 μ m (@1800 rpm)
Range	0.01~3000 μ m (@1800 rpm)
Unit	Displacement (μ m / peak-peak)
Phase	0.1°
RPM Range	400~20000 rpm
RPM Sensor	Magnetic Sensor
Vibration Sensor	Accelerometer
CPU	Vortex(32bits)
Display	320x240 dot LCD, LED Back-light
Power	100 ~ 240 VAC 50/60Hz (with adaptor)
Consumption	7W
Temperature	$0^{\circ}C \sim 50^{\circ}C$
Size	177 x 132 x 85 (mm)
Weight	About 1.4kg

CoversPlus INT'L	CoversPlus IN
P.9	P.10

C . Function Flow:

i. Operation flow chart:

ii . System Start: 1 . System Start Up:

2 . Main menu after system started:

CoversPlus INT'L	CoversPlus INT'L
P.11	P.12

iii . Vibration Monitoring:

1. Enter into vibration monitoring mode when wheel started;

2. Signal in reading ...;

3. When vibration exceed the initial setup limit, vibration will be inverted to display and beep happened.

4. Real vibration will be displayed after 10~15 seconds, Vibration monitor is going on proceeding when wheel stoped and start again. PressF1 key to realize the vibration status during wheel rotating.

CoversPlus INT'L	CoversPlus INT'L
P.13	P.14

iv . New Balancing:

1 . Press F2 Key to do a new balance;

2 . Move sliders to 0° ,120°,240° position individually, lock its tightly and start wheel;

Move Sliders to following angle	Main Menu
Slider A: 0.0° Slider B: 120.0° Slider C: 240.0°	
Move Sliders & Start Wheel	-

3. RPM in measuring ...;

4. Read signal at the stable rpm status;

CoversPlus INT'L	CoversPlus INT'L
P.15	P.16

6. Measurement is finished, stop wheel;

7 . Move slider A form 0° to 30° position, lock it tightly and start wheel;

8. Signal in reading ...;

CoversPlus INT'L
P.18

10. Measurement is finished, stop wheel;

11 . Move sliders to the real position according to the indication, lock its tightly and start wheel;

Move Slid	ers wit	h Rotating	Dir.	Main Menu
Slider A: Slider B: Slider C:	56.5 175.2 294.0	2		
lleater	Vib.	0.558 um		
Vector	Heavy	101.0°+		
To be co	ntinued	l, Start Wh	eel	

12. Signal in measuring ...;

CoversPlus INT'L	CoversPlus INT'L
P.19	P.20

13. Measurement is finished, stop wheel;

14. Trim sliders with indication (Take example for this menu, we only need to trim slider C, move 0.63° added to original angle along the wheel rotating direction), lock its tightly and start wheel;

15 . Signal in measuring ...;

16. Measurement is finished, stop wheel;

CoversPlus INT'L	CoversPlus INT'L
P.21	P.22

17 . Trim sliders with indication to modify continuously, PressF1 Key to return into the vibration monitoring mode.

v. Last Balancing:

1 . Press $\boxed{F3}$ Key to do the last static balance;

2 . Input three sliders original angle with cursor keys individually. (F2~F5) press OK key after entered each angle;

3 . Press $\overline{F6}$ Key after finished all three sliders original angle;.

4. Start wheel;

5. RPM in measuring ...;

6. Signal in reading ...;

CoversPlus INT'L	CoversPlus INT'L
P.25	P.26

8. Measurement is finished, stop wheel;

9 . Move slider with indication, lock it tightly and start Wheel;

10. Signal in reading ...;

CoversPlus INT'L	CoversPlus INT'L
P.27	P.28

12. Measurement is finished, stop wheel;

13 . Move sliders to real position with indication, lock its tightly and start wheel;

Move Sli	ders wit	h Rotat	ing	Dir.	Main
					Menu
Slider A	: 56.5	-			
Slider B	Slider B: 175.2°				
Slider C: 294.0°					
	Vib.	0.558	um	7	
Vector	Heavy	101.0°	+		
				_	
To be a				-1	{
IU DE C	oncinued	i, start	wne	.eT	

14 . Signal in measuring ...;

CoversPlus INT'L	CoversPlus INT'L
P.29	P.30

15 . Measurement is finished, stop wheel;

16. Trim sliders with indication (Take example for this menu, we only need to trim slider C, move 0.63° added to original angle along the wheel rotating direction), lock its tightly and start wheel;

17. Signal in measuring ...;

18. Measurement is finished, stop wheel;

CoversPlus INT'L	CoversPlus INT'L
P.31	P.32

19 . Trim sliders with indication to modify continuously, PressF1 Key to return into the vibration monitoring mode.

vi . Continue Balancing:

2. Start wheel;

CoversPlus INT'L	CoversPlus INT'L
P.33	P.34

4. Measurement is finished, stop wheel;

5 .Trim sliders with indication (Take example for this menu, we only need to trim slider C, move 0.63° added to original angle along the wheel rotating direction, lock its tightly and start wheel;

6. Signal in measuring ...;

CoversPlus INT'L	CoversPlus INT'L
P.35	P.36

7. Measurement is finished, stop wheel;

- 8 .Trim sliders with indication to modify continuously,
 - PressF1 Key to return into the vibration monitoring mode.

vii . Tolerance Limit Setup:

1. Press F5 key to do the tolerance limit setup;

2 . Press F2~F5 cursor keys to enter into the tolerance limit value, Press F6 key to save this value;

CoversPlus INT'L	CoversPlus INT'L
P.37	P.38

viii . Language Switch:

3. Press F6 key twice to change system language.

Ⅲ \ Simple and Easy Troubleshooting:

Problem	Cause	Solution
	Power isn't	Check power
	connected	adaptor
No Display after turn		
on	Adaptor is out	Contact vendor to
Power switch	of order	change a new one
	Power voltage is	Check input voltage
	mismatch	of adaptor
	RPM sensor isn't	Set up RPM sensor
	setup appropriately	appropriately
Can not enter into	RPM sensor was	Check and lock it
measuring	loosened	tightly
Procedure	RPM sensor is out	Contact vendor
	of order	
	Vibration sensor	Set up Vibration
	isn't setup	sensor appropriately
Can not measure	appropriately	
vibration data	Vibration sensor	Check and lock it
	was loosened	tightly
	Vibration sensor is	Contact vendor
	out of order	
	Grinder rpm is	Check grinder
	unstable	controller

CoversPlus INT'L	CoversPlus INT'L
P.39	P.40

IV · Product Certificate:

CoversPlus International Co., Ltd.

Product Certificate

Custom			
Address			
Tel		Fax	
Model	WB-7000SI	S/N	
Vib. Sensor	DTE150-1A	Sensor S/N	
Purchase		Guarantee	
Date		Date	

- 1. The certificate becomes effective with the purchase date and seal by agency.
- 2. The certificate offer 1 year's guarantee for the quality of instrument, if it is damaged under normal usage as well as no man-made issue.
- 3. Out of guarantee period, vendor can ask for repair cost because of the man-made or weather reason.
- 4. If the certificate is missed or not intact, it will not reissue.
- 5. No seal no effective.
- 6. Please enclose this certificate when instrument send back for repairing.

CoversPlus International Co.,Ltd. 9F,No.32-1,Lane 450,Sec. 5, Cheng-Gong Rd., Nei-Hu Area,Taipei,Taiwan TEL:+886-2-26305829 FAX:+886-2-26310950 http://www.coversplus.com.tw http://www.coversplus.com.cn E-mail: cover@coversplus.com.tw

CoversPlus INT'L